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We characterize quantum oscillations in the magnetic susceptibility of a quantum critical non-Fermi liquid.
The computation is performed in a strongly interacting regime using the nonperturbative holographic corre-
spondence. The temperature dependence of the amplitude of the oscillations is shown to depend on a critical
exponent �. For general � the temperature scaling is distinct from the textbook Lifshitz-Kosevich formula. At
the “marginal” value �= 1

2 , the Lifshitz-Kosevich formula is recovered despite strong interactions. As a by-
product of our analysis we present a formalism for computing the amplitude of quantum oscillations for
general fermionic theories very efficiently.
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I. RESULTS AND BACKGROUND

A central question in the theoretical characterization
of non-Fermi liquids is the fate of the Fermi surface. For
instance the “strange metal,” and perhaps quantum critical,
regions of the cuprate or heavy fermion phase diagrams
separate phases with very distinct energy-momentum distri-
butions of fermions. This is seen in many experimental
probes, a recent discussion with strong overlap with the con-
cerns of the present paper is Ref. 1.

Quantum oscillations are a robust feature of systems with
a Fermi surface.2 The recent and ongoing experimental ob-
servation of quantum oscillations in the copper oxide high-
temperature superconductors3–9 is reinvigorating theoretical
approaches to the subject �e.g., Refs. 10 and 11�. Present
measurements are, perhaps surprisingly, consistent with text-
book results for quantum oscillations in Fermi liquids. How-
ever, as an increasing range of regimes are investigated, in
these and other quintessentially non-Fermi liquid materials,
it will be crucial to have theoretical templates available for
comparison. For instance, the exciting recent results of Ref.
12 show that the effective quasiparticle mass, as read off by
fitting quantum oscillations to the Fermi liquid formula, ap-
pears to diverge as one approaches a metal-insulator quan-
tum phase transition. A similar divergence is observed in
heavy fermion compounds.13

It has long been suspected that strong electronic correla-
tions should lead to deviations from the established Fermi
liquid results for quantum oscillations; recent work investi-
gating the effect of interactions on quantum oscillations
includes.14–18 The theoretical hurdle we attempt to address is
that the most interesting regimes are often strongly coupled
and perturbative quantum field theory treatments may not
fully capture the physics of interest. In this paper we will use
the inherently nonperturbative “holographic correspondence”
�see e.g., Refs. 19 and 20 for relevant introductions� to give
a controlled computation of quantum oscillations in the mag-
netic susceptibility of a strongly interacting quantum critical
non-Fermi liquid. We will however highlight similarities
with the approach in Ref. 14.

The main result of this paper will be the following expres-
sion for the leading period de Haas-van Alphen magnetic
oscillations in a class of 2+1 dimensional theories that ex-
hibit an emergent quantum criticality at low energies

�osc. = −
�2�osc.

�B2 =
�ATckF

4

eB3 cos
�ckF

2

eB
�
n=0

�

e−cT/eBkF
2 /��T/��2�−1Fn���,

�1�

where � is the magnetic susceptibility, e is the charge of a
fermionic operator, A is the area of the sample, T the tem-
perature, c the speed of light, kF the Fermi momentum, B the
applied magnetic field, � the chemical potential, and � a
critical exponent. Our computations are in the clean limit,
with no disorder. The most important of these parameters, for
our purposes, is the critical exponent �, which satisfies 0

���
1
2 . At �= 1

2 we will find Fn� 1
2 �=2�2h̄�n+ 1

2 �, where h̄ is
a dimensionless constant defined below. The sum in expres-
sion �1� then gives
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eB
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2
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This is essentially the textbook Lifshitz-Kosevich result,2,21

as we discuss in more detail below. Our theories will be in
2+1 dimensions, although many results can likely be gener-
alized to 3+1 dimensions. When �	

1
2 the functions Fn���,

given below, are considerably more complicated. The point
we wish to emphasize, however, is that at larger temperatures
T


�eB
ckF

2 , the decay of the amplitude as a function of T is not
of the simple exponential form predicted by the Lifshitz-
Kosevich formula, but rather

�osc. � e−T2�
. �3�

This is what we will mean by a generalized Lifshitz-
Kosevich scaling. If we write this scaling as a temperature-
dependent effective quasiparticle mass in the usual Lifshitz-
Kosevich formula, then

m� �
kF

2

�
��

T
�1−2�

, �4�

which is divergent when T�� and �	
1
2 . This is perhaps

interesting in the light of the observations in Refs. 12 and 13.
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While the large temperature scaling �3� is the most uni-
versal feature of our results, we can also plot the full ampli-
tude �1� as a function of temperature for given values of the
parameters. We will introduce the various free parameters of
the model below. Typical results are shown in Fig. 1. The
most interesting observation is that for a given value of the
critical exponent �	

1
2 there is a range of possible behaviors

at low temperature. While the curves can saturate, mimicking
the usual Lifshitz-Kosevich behavior, it is also possible for
the curve to reach zero temperature with a finite negative
gradient or alternatively to exhibit a maximum before reach-
ing zero temperature with a positive gradient. A maximum
was reported experimentally in Ref. 22. In Ref. 22, it was
further noted that an improved fit to the data could be
achieved by modifying the Kosevich-Lifshitz formula.

The theories for which Eq. �1� will be shown to hold are
described using the “holographic correspondence.” We will
not review the methodology in detail, introductions written
for the condensed matter community can be found in Refs.
19 and 20, but rather summarize the physical properties of
the theories in question.

The holographic correspondence allows a class of
strongly interacting quantum field theories to be studied in a
limit in which there are a large number of degrees of free-
dom per site. Unlike more traditional vector “large N” limits,
the theories do not become weakly interacting in this limit,
and might therefore be expected to capture aspects of inter-
esting experimental systems that would otherwise elude the-
oretical control.

It was shown in Ref. 23, following earlier work in Refs.
24–26, that the fermion spectral densities in these theories
exhibit a broad peak with a zero temperature dispersion re-
lation at k�kF of the form

�

vF
+ hei�2� = k − kF, �5�

where �vF ,h , ,� ,kF� are real constants. For �	
1
2 the

nonanalytic term �2� dominates at low frequencies, leading

to non-Fermi liquid behavior. This non-Fermi liquid behavior
is characterized by an emergent low energy, ���, scale
invariance with � determining the dynamical critical expo-
nent. For this reason we refer to our theories as quantum
critical. It is a “metallic” quantum criticality in the sense that
the momentum is scaled to kF rather than zero. The case �
= 1

2 leads to the dispersion relation �
vF

+hei� log �=k−kF,
which is precisely that of a marginal Fermi liquid.27 For all
��

1
2 , the peak in the spectral density does not correspond to

a stable quasiparticle excitation. This is because the width of
the peak is always comparable to its height. Viewed as a pole
in the spectral density in complex frequency space, its resi-
due goes to zero as the pole hits the real axis at k=kF.23 In
principle we could also study ��

1
2 , but here the linear term

in Eq. �5� dominates at low energies and a more conventional
behavior is expected. See however23 for some curious prop-
erties of these cases.

Given that Eq. �5� does not describe a weakly interacting
�stable� quasiparticle, one can anticipate that the contribution
of the fermions to thermodynamic and transport quantities
will not be simply that of a free fermion with dispersion Eq.
�5�. The correct way of computing in these systems was de-
veloped in Ref. 28, with the more mathematical aspects
treated in Ref. 29. The essential step is to consider Eq. �5� as
the singular locus of the fermion spectral density
Im GR�� ,k�. It is easy to see that Eq. �5� has two types of
singularities, a pole and then a branch cut emanating from
�=0. While the pole describes the naïve “quasiparticle,”
both the pole and the branch cut will give contributions to,
e.g., thermodynamic quantities.

This paper will be concerned with small but finite tem-
peratures. At finite temperature, the branch cut of Eq. �5� is
resolved into closely spaced poles. For T ,��� one
obtains23 that the poles of Im GR�� ,k� are given by solutions
to

F	���k�
 = 0, �6�

where

F��� =
k − kF

��1

2
+ � −

i�

2�T
− i�� −

heiei���2�T�2�

��1

2
− � −

i�

2�T
− i�� .

�7�

See e.g., Figure �3� of Ref. 28. The dimensionless constant �
is related to the normalization of the current-current
correlator.23 While complicated, this formula is largely fixed
by an emergent SL�2,R� �or possibly even Virasoro� symme-
try at energies ���, suggesting perhaps validity beyond the
specific holographic theories considered in Ref. 23. This
emergent IR scaling symmetry is the quantum criticality re-
ferred to in the title of this paper. The only dimensionful
scales in the theory are the chemical potential �, magnetic
field B, Fermi momentum kF and temperature T. In Eq. �7�
we have assumed that �	

1
2 so that the linear in � term in

Eq. �5� can be dropped at low energies.
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FIG. 1. �Color online� Typical dependences of the amplitude of
quantum oscillations on temperature. For illustration �= 1

3 , eB
ckF

2 =1,

and �=1. Angles of ĥ from top to bottom: �= �−�0 ,
−0.2�0 ,0.51�0 ,�0� where the maximum value �0��� 1

2 −��. The

magnitude of ĥ has been scaled to make the large temperature be-
havior coincide: h= �0.34,0.39,0.58,1�.
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All of the poles given by Eq. �6� contribute to quantities
of interest, even those that are a long way away from the real
frequency axis. The key result of Refs. 28 and 29 was to
express the contribution of the fermions to the free energy as
a sum of contributions from these poles. The formula is

� =
eBAT

2�c
�

�
�

�����
log� 1

2�
��� i�����

2�T
+

1

2
��2� . �8�

Anticipating our interest in magnetic fields, we have given
the free energy as a sum over Landau levels rather than mo-
menta. The first term in Eq. �8� is the degeneracy of the
Landau levels. The frequencies ����� are obtained from
���k� in Eqs. �6� and �7� by the replacement k2→ 2�eB

c . This
replacement is precise in the limit eB

c �kF
2 that we will be

interested in. The formula �8� is not as exotic as it may
appear; for instance, the free energy of a damped harmonic
oscillator can be computed using essentially the same for-
mula, with �� again given by the poles of the retarded
Green’s function.28,29 The appearance of ��ix+ 1

2 �2 is a gen-
eralization of the Fermi-Dirac distribution to complex ener-
gies. If x is real then ��ix+ 1

2 �2=� sech �x, recovering the
standard expression.

Our objective is to perform the sum �8� given Eq. �7� to
obtain the magnetic susceptibility for general T� eB

m�c ��.
The result for the leading oscillatory part of the susceptibility
is stated in Eq. �1�.

II. COMPUTATION

Our starting point is the formula for the fermionic contri-
bution to the free energy, given in Eq. �8� in terms of the
poles �6� of the fermion retarded Green’s function. It will be
useful to consider the dimensionless quantity

�̂ �
2�c

eBAT
� = Re�

�
�

x����
2 log ��x���� +

1

2
� , �9�

where we set

x =
i�

2�T
. �10�

In the formula �7� defining the poles we will furthermore set

ĥ �
hei+i���2���2�

�kF
� h̄�sin � + i cos �� , �11�

so that �ĥ , h̄ ,�� are now dimensionless. While in principle
these parameters are determined by data in the UV by solv-
ing some ordinary differential equations numerically,23 we
will simply treat them as order one quantities, as we are more
interested in parametrizing possible low energy physics.
There is a restriction on � that ensures that the poles are in
the lower half frequency plane: −�� 1

2 −��	�	�� 1
2 −��. No-

tice that the imaginary part of ĥ is always positive.
Using all these expressions we can rewrite the sum over

����� as a contour integral. Noticing that F�x� does not have
poles, just zeroes in the right half plane 	corresponding to the
poles �� of GR�� ,k� in the lower half plane
 we can write

�̂ = Re
i

�
�

�
�

−1/4−i�

−1/4+i�

dx log ��x +
1

2
�F��x�

F�x�
. �12�

The contour was chosen such that it leaves the poles of F��x�
F�x�

to the right and the branch cut of log ��x+ 1
2 � to the left.

Implicitly we are also taking the contour to include a large
semicircle in the right half plane. We will not need to evalu-
ate the contribution from the semicircle explicitly, at a later
step we will exchange the current sum over poles inside the
contour for a sum of poles outside the contour �i.e., in the
left-hand plane�.

We would like to integrate �12� by parts, but this is com-
plicated by the presence of the branch cuts from the logarith-

mic term. However, the derivative of �̂ with respect to the
magnetic field can be safely integrated by parts to give

M̂ �
��̂

�B
= Re

1

i�
�

�
�

−1/4−i�

−1/4+i�

dx

���x +
1

2
�

��x +
1

2
�

�BF�x,B�
F�x,B�

.

�13�

We will be interested in considering the periodic behavior in
1
B of this expression. Therefore, it is of use to Fourier trans-
form the Landau level variable �. We will perform a Poisson
resummation to rewrite Eq. �13�. The formula we use is

�
�=0

�

f��� = �
k=−�

� �
0−

+�

dxf�x�ei2�kx. �14�

It is straightforward to apply this formula to Eq. �13�, with
the Landau levels going over �=0,1 ,2 , . . . We obtain

M̂ = Re
1

i�
�

k=−�

� �
−1/4−i�

−1/4+i�

dx

���x +
1

2
�

��x +
1

2
� G�x,B,k� , �15�

where

G�x,B,k� � �
0

�

d�
�BF�x,B,��

F�x,B,��
ei2�k�

=
ckF

2

2eB2�
0

� duu2ei2��ckF
2 /2eB�ku2

u − �1 + �ĥ� T

�
�2�

S��x�� . �16�

in which we used the explicit form of Eq. �7�, changed vari-
ables to u=�2eB�

ckF
2 and set

S��x� =

��1

2
+ � − i� − x�

��1

2
− � − i� − x� . �17�

Equations �15� and �16� appear to involve formidable
sums and integrals. However, we can now neatly separate out
the oscillating and nonoscillating parts of this expression. We
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will deform the contour in such a way that the integral fol-
lows a steepest descent path of the exponential term. The
reason this helps is that the resulting integral is manifestly
nonoscillating in 1 /B.

We therefore deform the integral in Eq. �16� by u
→eik/k�/4u. It is crucial to realize here that the contour needs
to be rotated in opposite directions in the complex plane,
depending on the sign of k, to guarantee convergence. The
only possible obstructions to this contour rotation are either a
contribution at infinity, which is absent in our case as the
integrands decay exponentially if the paths are rotated in the
correct direction, or if a pole is crossed as the contour is
deformed. The expression �16� makes manifest that there is

such a pole at u=1+�ĥ� T
� �2�S��x�. In the limit of physical

interest, T /�→0, this pole is slightly off the real axis, for
0	�	

1
2 , where our formulas are valid.

The exact position of the pole depends on the phase of ĥ
but it is always slightly above the real axis �this can easily be

checked for the allowed range of values of ĥ and x�− 1
4

+ iR�. The upshot is that for negative k we can rotate the
contour and get

G�x,B,− k� =
ckF

2

2eB2
e−i��/2�

��
0

�

du
u2e−2��ckF

2 /2eB2�ku2

u − ei��/4��1 + �ĥ� T

�
�2�

S��x�� .

�18�

This contribution is strictly nonoscillating1 in 1
B . Deforming

the contour for positive k we pick up a contribution from the
pole. Calculating the appropriate residue yields

G�x,B, k� = Gnon-osc.�x,B, k� + Gosc.�x,B, k�

= Gnon-osc.�x,B, k� +
�ickF

2

eB2

��1 + �ĥ� T

�
�2�

S��x��2

�ei2��ckF
2 /2eB�k	1 + �ĥ�T/��2�S��x�
2

. �19�

The first term is nonoscillating and is the same as Eq. �18�
with various factors of ei�/4→e−i�/4. We are therefore left
with the following oscillating contribution

Gosc.�x,B,k� = ��k�Gosc.�x,B, k� . �20�

where ��k�=1 for k�0 and ��k�=0 for k	0. The k=0
term is also nonoscillating and does not concern us. We have
thus performed the first of our integrals, insofar as obtaining
the oscillating term is concerned.

The next integral to address is the x integral in Eq. �15�.
We will convert this integral into a sum over residues that are
outside the original region of integration. That is, to the left
of the imaginary axis. Doing this allows us to represent the

integral as a sum of the residues of the poles of
���x+1

2
�

��x+1
2

�
. These

are located at − 1
2 −n with n=0,1 ,2 ,3 , . . . and have minus

unit residue. Combining this operation with the result �20�,
our expression �15� becomes

M̂osc. = Re
2�ckF

2

ieB2 �
k=1

�

�
n=0

�

��1 + �ĥ� T

�
�2�

S��−
1

2
− n��2

�ei2��ckF
2 /2eB�k	1 + �ĥ�T/��2�S��− 1/2 − n�
2

. �21�

It is clear at this point that we have obtained sums over terms
that both oscillate and decay in 1 /B. We can now take the
physical T /�→0 limit keeping only leading terms determin-
ing the oscillations and exponential decay. The result is

M̂osc. =
2�ckF

2

eB2 �
k=1

�

sin
�ckF

2k

eB
�
n=0

�

e−2�2�ckF
2 /eB��T/��2�k Im ĥS��−1/2−n�.

�22�

This last formula is essentially the result. To compute the
magnetic susceptibility � we have to reinsert the factors that

relate � to �̂ in Eq. �9�. Thus

� = −
�2�

�B2 = −
eAT

�c
M̂ −

eBAT

2�c

�M̂

�B
. �23�

For situations of physical interest we have eB
c �kF

2 and there-
fore the leading result comes from the second term by acting
with the derivative on the sine in Eq. �22�. Focusing on the
leading period, the k=1 term, this gives our main result, that
we already quoted in Eq. �1�, with

Fn��� = 2�2 Im ĥS��−
1

2
− n� . �24�

We also already noted in the introduction that the case �
= 1

2 is special. This is because the ratio of gamma functions in

Eq. �17� simplifies in this case to give Fn� 1
2 �=2�2h̄�n+ 1

2 �.
The sum over n can then be done explicitly, to yield a result
of the standard Lifshitz-Kosevich form �2�.

In general, we cannot perform the sum over n in closed
form. However, it is simple to check numerically that for all
allowed values of the parameters, Fn��� is positive and
monotonically increasing in n. Therefore at the high tem-
peratures of primary interest we can keep only the first term
in the sum in Eq. �22� or Eq. �1�given by n=0. This obser-
vation also implies that the k=1 term kept in Eq. �1� has an
exponentially larger amplitude than the other terms in this
regime. Thus we obtain, for general �	

1
2 , the non-Lifshitz-

Kosevich scaling that we quoted in Eq. �3�.

III. GENERAL FORMULA FOR QUANTUM
OSCILLATIONS

We will now rederive the result �1� via a slick argument.
The argument is quite general and we anticipate future ap-
plications. The method used is a generalization of that in

SEAN A. HARTNOLL AND DIEGO M. HOFMAN PHYSICAL REVIEW B 81, 155125 �2010�

155125-4



Refs. 2 and 29 and we will be brief in presentation.
The statement is that for any fermionic system satisfying

assumptions to be given shortly

�osc. =
eBAT

�c
Re�

n=0

�

�
k=1

�
1

k
ei2�k���n�, �25�

where the ���n� are defined as the solutions to

F	�n,���n�
 = 0. �26�

Here F�� ,��=0 defines the singular locus of the fermion
retarded Green’s function in a magnetic field, GR�� ,��. The
fermionic Matsubara frequencies are �n=2�iT�n+ 1

2 �. We as-
sume for simplicity that there is a unique ���n�, but it is
simple to relax this assumption. It is clear that using Eq. �7�
with k2= 2�eB

c , solving for ���n� as in Eq. �26� and plugging
into Eq. �25� immediately reproduces our previous result
�21�.

The class of theories to which the formula �25� will most
directly apply are those where the fermionic partition func-
tion can be expressed as the determinant of an operator O in
a thermal Euclidean space. This certainly applies to free
theories and to theories with classical holographic duals. In
the latter case the determinant is in one extra curved space-
time dimension, but this does not make a difference to the
argument. We assume that in a background magnetic field,
the eigenvalues of the operator can be labeled by the quan-
tum numbers �n and � as well as any others. The type of
reasoning in Ref. 29 is quickly seen to imply that we must
have, up to UV contributions that can be dealt with system-
atically but which will not contribute to oscillations,

� = − T tr log O = −
eBAT

�c
Re �

�n�0
�

�

log	� − ���n�
 .

�27�

The logic that leads to this expression is to separate the ei-
genvalues of O according to �n and �. The contribution from
positive and negative �n to the determinant are complex con-
jugates of each other28,29 so we concentrate on the positive
Matsubara frequencies. For a fixed �n we can deform the
operator by letting �→�+� and then match the zeros of the
determinant of On,� as a function of �. Zeros arise whenever
On,� has a zero mode. This in turn occurs whenever the
Euclidean Green’s function has a pole at �=�n, which we
define to occur at �+�����n�. The retarded Green’s func-
tion is the analytic continuation of the Euclidean Green’s
function from the upper half frequency plane, thus connect-
ing with our definition of F�� ,�� appearing in Eq. �26�.
Writing det On,������+�−���n�� and setting �=0 gives
Eq. �27�.

Poisson resumming Eq. �27� using Eq. �14� and picking
out the oscillatory part of the Fourier transform by rotating
the contour in different directions for negative and positive k,
in a similar way to how we did previously, then directly leads
to Eq. �25�. Only the rotation at positive k leads to a singu-
larity contribution giving the oscillating term.

We now see that the formula �25� reproduces known ex-
pressions for free fermions. The nonrelativistic, spinless

electron �the effect of spin is simply to multiply the answer
by two in the limit eB

c �kF
2� has

Fnon-rel.��,�� =
Be

mc
� − � − � . �28�

It is trivial to solve for ���n� defined via Eq. �26�. Plugging
into Eq. �25�, differentiating twice and performing the geo-
metric series sum over n as previously leads to

�osc. =
2�AT�2m2c

B3e
�
k=1

� k cos�2�k
�mc

Be
�

sinh�2�2k
Tmc

Be
� . �29�

This is literally the Lifshitz-Kosevich formula2 in 2+1 di-
mensions, which we have derived rather painlessly. The fact
that F is linear in � in Eq. �28� makes the steps leading to
Eq. �27� trivial in this case, there is no rewriting involved.

We can treat the spinless relativistic fermion similarly. In
this case

Frel.��,�� = m2c4 + 2Be�c − �� + ��2. �30�

It is again immediate to solve for �. Use of Eq. �25�, the limit
T��, differentiation and summing a geometric series gives

�osc. =
�ATckF

4

2B3e
�
k=1

�

k

cos��k
ckF

2

Be
�

sinh��2k
T�

Bec
� . �31�

We used the relation kF
2c2=m2c4−�4. In the massless limit

�or � much larger than mc2� this expression recovers our
result �2� for the “marginal” non-Fermi liquid at �= 1

2 if we

choose h̄=1.
The expression �25� is essentially the same as a general

expression appearing in Ref. 14. In Ref. 14 the effects of
interactions are incorporated into a renormalized self-energy
for quasiparticles whose one loop contribution to the suscep-
tibility is then computed. This is a controlled approximation
if there are well-defined quasiparticles so that higher-order
corrections that cannot be absorbed into the self energy are
negligible. In the holographic theories studied here the self-
energy due to strong interactions is captured by the propaga-
tion of the fermions on a nontrivial background spacetime,
leading to the singular locus �7�. Interactions between these
fermions are suppressed by the “large N” limit in which the
holographic computations are performed. Therefore, holog-
raphy provides a controlled setting in which the self energy
can be strongly renormalized to the extent that there are not
well-defined quasiparticles and yet quantities such as the sus-
ceptibility can be computed with a determinant formula such
as Eq. �25�.

IV. MAGNITUDE OF OSCILLATIONS
AND THE FERMI SURFACE

We need to check that our result could in principle be
measured. For that purpose we compare the order of magni-
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tude of the amplitude of the oscillating part to the nonoscil-
lating part. We will pursue this calculation at low tempera-
tures, where the oscillating signal is strongest. In this limit,
we will see that the oscillating susceptibility strongly domi-
nates over the nonoscillating part in the regime of interest
eB
c �kF

2 for 1
6 	�	

1
2 . This dominance is, of course, not a

strict requirement for experimental detection. We first esti-
mate the oscillating magnetization. At low temperatures all
terms in the sum in Eq. �1� are important. In fact, the infinite
tail of this sum dominates. Therefore, we can replace
S��− 1

2 −n� with its n→� limit, S��− 1
2 −n�→n2�. Because the

quantity appearing in the sum is T
�n, we can replace the sum

in n with an integral at leading order in T
� . Therefore the

magnitude of Eq. �1� becomes

�osc
T�0
A

�
ckF

4T

eB3 � dne−c�F
2 /eB�T/��2�n2�

�
e2�

c2kF
2 � � eB

ckF
2 �1/2�−3

.

�32�

It is interesting to rederive this last result from a different
perspective that makes transparent the role of a Fermi sur-
face. At low temperatures the susceptibility is most naturally
written as a sum over �, without Poisson resumming. We can

start from the expression �13� for M̂ and calculate � by use
of Eq. �23�. As before, we can change the x integral to a sum
over poles labeled by n. Once again, at zero temperature the
tail of this sum dominates and we can substitute �n→�dn
and S��− 1

2 −n�→n2�. The resulting integral can be performed
analytically to leave a sum over � that is similar to the ex-
pressions obtained in Ref. 28. This sum has a nonanalyticity

at �=
ckF

2

2eB . Expanding the susceptibility at small eB
ckF

2 using a
generalized version of the Euler-Maclaurin formula,31 the
sum in � becomes an integral plus contributions at the edges.
The edge near the Fermi surface is responsible for the lead-
ing effect we are interested in. Explicitly

�T�0
A

� �
�

�e

cB
g�2eB�

ckF
2 ��1 −�2eB�

ckF
2 �−2+1/2�

� Analytic�B� +
e2�

c2kF
2 � eB

ckF
2 �1/2�−3

, �33�

where g� · � is a dimensionless function that is regular at 1.
The analytic terms give a generic expansion, with the con-
stant term representing, for instance, Landau diamagnetism.
This piece includes contributions that have not been captured
by the poles in Eq. �7�, as this formula has zoomed in on the
low energy states near the Fermi surface. The second term is
the leading contribution coming from the Fermi surface and
agrees with the previous computation Eq. �32�. From Eq.
�33� we can see that the oscillating term strongly dominates
the susceptibility for 1

6 	�	
1
2 .

Finally, we can check that the scaling Eq. �3� is poten-
tially observable in an experimentally interesting regime
without being exponentially suppressed by temperature. Set-
ting all dimensionless parameters except for � to be order

unity, we can estimate the magnitude of the oscillations. Tak-
ing � to be of order eV, T to be of order Kelvin and reinsert-
ing fundamental constants the exponent in our final result �1�
is of order

ckF
2

�eB
� kBT

�
�2�

�
FB

B
� �10−4�2�, �34�

where FB is the frequency of the oscillations measured in
Tesla. In measurements on the underdoped cuprates, for in-
stance, FB /B�10,3 and so the exponent is not too large for a
wide range of values of �.

V. DISCUSSION

Using the holographic correspondence we have obtained
the amplitude of quantum oscillations in a family of strongly
interacting quantum critical theories. Our expression �1� pro-
vides a theoretical template for possible violation of Lifshitz-
Kosevich scaling of the amplitude with temperature due to
strong interactions. We also found that at the marginal value
of the critical exponent �= 1

2 , the Lifshitz-Kosevich result �2�
survives the interactions. Our results are perhaps the most
concrete yet to emerge from applications of holography to
condensed matter physics. The scalings we have described
could conceivably be found in systems of current experimen-
tal interest. The basic input into our computation was inco-
herent electronic excitations with dispersion �5�, with ��

1
2 ,

that may arise at strongly interacting metallic quantum criti-
cality. Similarly, the most promising regions for observing a
violation of Lifshitz-Kosevich scaling are near quantum
phase transitions where the effective mass of the charged
quasiparticles diverges. The onset of the divergence of qua-
siparticle mass is observed in quantum oscillations in both
heavy fermion13 and cuprate systems.12 In the cuprates this
should also occur as one crosses from the underdoped to the
overdoped region. Unfortunately, a larger quasiparticle mass
makes the oscillation signal smaller and harder to detect
experimentally.

It will be important to generalize our computations to in-
clude disorder and to see to what extent the textbook Dingle
scaling is modified. The dynamics of holographic theories
with disorder has barely been studied.30 Furthermore, while
the singular loci �7� for the Green’s function is the simplest
following from the holographic correspondence,23 it is likely
not unique. As finite density dual geometries become avail-
able, it will be of interest to see to what extent our result �1�
is modified.
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